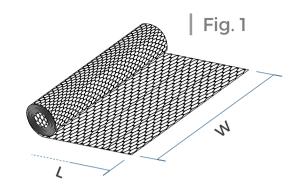
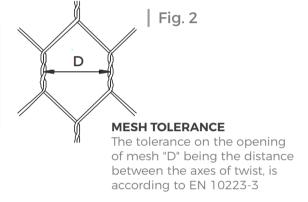


Technicals Standard


Double twisted hexagonal mesh rock barriers

The hexagonal mesh rockfall barrier is a structure made of hexagonal double twisted wire mesh (Fig. 1 and 2).


All steel wires used in the manufacture of the mesh are mild steels with heavy galvanization in accordance to ASTM A 641M-98 standards.

The standard combinations mesh/wire are shown in Table 1.

In order to reinforce the structure, all edges are selvedged with a wire having greater diameter than mesh wire.

Table 1: STANDARD COMBINATIONS MESH-WIRE						
Туре	D (mm)	Tolerances	Wire Diameter (mm)			
8 × 10	80	± 10%	2.7/3.7 PVC Coated			

Wire

- 1. **Tensile strength**. Both the wire used for the manufacture of rockfall barriers, shall have a tensile strength of 350-500 N/mm2 according to EN-10223-3. Above values are referred to wire before manufacturing mesh. Tolerances of wire shown at Tab. 2 meet the requirements of EN 10218.
- 2. **Elongation**. The test must be carried out before manufacturing mesh on a sample at least 25 cm long. Elongation shall not be less than 10% as per EN-10223-3.
- 3. **Galvanizing coating**. Minimum quantities of Zinc coating, shown at Tab. 2 meet the requirements of EN 10244-2 for Zinc or Zn-Al 5% MM coatings (Class A) and ASTM 856-98 (Class 80).

TABLE 2: WIRE PROPERTIES						
	Wire Diameter mm					
	2.7	3.05	3.4	3.9		
Tensile Strength ¹ N/mm ²	350 to 550					
Elongation ² %	> 10					
Min. Mass of Coating ² g/m ²	245	255	265	275		
Tolerance ³ mm	±0.06	±0.07				
Tolerance PVC Thickness ³ mm	±0.1					

in accordance with European Standard EN 10223-3

² in accordance with European Standard EN 10244-2, class A

³ in accordance with European Standard EN 10218-2

PVC coated Hexagonal Mesh

In addition to the galvanization, the steel wire is coated with a PVC polymer of a nominal thickness of 0.50 mm. The technical characteristics and the resistance of the PVC to ageing meet the relevant standards. The main values for the PVC material are as follows:

• Colour. Grey-RAL 7037 according to ASTM D 1482-57T;

Specific Artificial Ageing Tests

• Salt spray test.

Test period 1,500 hours, test method ASTM-B 117-90;

Exposure to UV rays.

Test period 2,000 hours at 63 °C, test method ASTM D1499-92 and ASTM G 23-93 apparatus type E;

• Exposure to high temperatures.

Test period 24 hours at 105 °C, test method ASTM D 1203-89 and ASTM D 2287-92;

• Brittleness temperature.

Cold Bend less than -30 °C test method BS 2782- 104 A; Cold Flex less than +15 °C in accordance with BS 2782-151A (84).